Flux-based superconducting qubits for quantum computation

نویسنده

  • T. P. Orlando
چکیده

Superconducting quantum circuits have been proposed as qubits for developing quantum computation. The goal is to use superconducting quantum circuits to model the measurement process, understand the sources of decoherence, and to develop scalable algorithms. A particularly promising feature of using superconducting technology is the potential of developing high-speed, on-chip control circuitry with single-flux quantum (SFQ) electronics. The picosecond time scales of SFQ electronics means that the superconducting qubits can be controlled rapidly on the time scale that the qubits remain phase-coherent. Recent progress and the major challenges are presented. 2002 Elsevier Science B.V. All rights reserved. PACS: 03.67.Lx; 74.90.þn; 85.25.Dq; 85.25.Cp J

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Producing cluster states in charge qubits and flux qubits.

We propose a method to efficiently generate cluster states in charge qubits, both semiconducting and superconducting, as well as flux qubits. We show that highly entangled cluster states can be realized by a "one-touch" entanglement operation by tuning gate bias voltages for charge qubits. We also investigate the robustness of these cluster states for nonuniform qubits, which are unavoidable in...

متن کامل

Master ’ s Thesis Readout and Control of Semiconductor - Nanowire - Based Superconducting Qubits

Superconducting quantum bits (qubits) are promising candidates for scalable, fault-tolerant quantum computation. Being able to determine a quantum state with a single measurement is essential for using any quantum system for computation. In this thesis single shot readout is implemented for hybrid semiconductor based superconducting qubits by integrating a near quantum limited parametric amplif...

متن کامل

Coherent operation of coupled superconducting flux qubits

We study the quantum operation of coupled superconducting flux qubits under a microwave irradiation. The flux qubits can be described as magnetic dipole moments in the limit of weak microwave field amplitude consistent with usual experimental situations. With the Hamiltonian for coupled qubits under a microwave field, we show that a strong coupling enables to realize the high performance contro...

متن کامل

Special issue on quantum computing with superconducting qubits

Ten years ago the first superconducting qubit was demonstrated experimentally [1]. By now quantum computing with superconducting qubits has become a subject of intensive experimental and theoretical research in dozens of groups around the world. The idea of this Special Issue of the journal is to show the status of experimental research in this area after the first decade of work. Most of the b...

متن کامل

Coupling Josephson qubits via a current-biased information bus

– Josephson qubits without direct interaction can be effectively coupled by sequentially connecting them to an information bus: a current-biased large Josephson junction treated as an oscillator with adjustable frequency. The coupling between any qubit and the bus can be controlled by modulating the magnetic flux applied to that qubit. This tunable and selective coupling provides two-qubit enta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001